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Abstract

In transportation, the problem of the tragedy of the commons manifests itself in the

form of road congestion: the social optimum and individual optimum are not consistent

with each other. We suggest a real-time charging method to handle this issue in accordance

with the optimal congestion pricing scheme. Using taxi data from New York City, we

optimize drivers’ route selections under the proposed fee scheme and find that the overall

journey time during peak hours for three random days in 2010 decreases by 7% to 19%.

Keywords: Tragedy of the Commons; Road Congestion; Real-Time Surcharge

Contents

1 Introduction 3
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Traffic Regulation Based on Economic Principles . . . . . . . . . . . . . . . . 4
1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Model 6
2.1 The social planner’s optimization problem . . . . . . . . . . . . . . . . . . . . 6
2.2 The social cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The optimization strategy and computation method . . . . . . . . . . . . . . . 7

3 Braess’s Paradox Network Demonstration 8

4 The Data 9

5 Empirical Results 10

1



6 Discussion and Conclusion 12

7 Appendix A: 31

8 Appendix B: 33

2



1 Introduction

Severe traffic congestion has long been an exigent issue in growing large cities, thwarting
drivers from executing their plans in punctuality, exacerbating air pollution as an effect of car
fuel emissions, and handicapping people from productivity and efficiency. According to the
2018 INRIX global traffic scorecard, the typical American motorist loses 97 hours per year due
to congestion, spending $87 billion. (INRIX, 2019). In addition to impeding drivers from ef-
ficiently following their itineraries, traffic congestion also incurs increased energy usage, more
pollution, and higher incidents of traffic accidents. According to a mathematical model, in
comparison to the range between 40kmph to 70kmph, the range of speed between 0 kmph to
40 kmph increases fuel consumption from 16.66 km/l to 12.5 km/l, indicating a reduction of
24.96% in fuel economy of the vehicles in traffic congestions (Jayasooriya & Bandara, 2017).
Shown by the case of Ghana, the levels of heavy metals emitted from vehicles along roads in
Accra, a road with high traffic are relatively high compared to other roads where traffic volume
is low, which means that traffic congestion is highly associated with air pollution (Armah et
al., 2010). Moreover, “increased traffic congestion coupled with unsafe driving behaviors are
creating an increase in the number of automobile accident fatalities” (Bull Attorneys).

Presented with all these prevailing issues, therefore, governments have attempted numer-
ous approaches to combating excessive road congestion in ways such as restricting traffic flow
on certain streets, adding traffic lights, expanding road capacities, etc. However, each method
proposed poses different economic challenges and accompanies inevitable limitations, such
as engendering provisional imbalance, catalyzing resource-wasting, and, in particular for the
method of increasing road capacities, leading to inverse consequences. Dietrich Braess, a Ger-
man mathematician, quantitatively demonstrated in 1968 that building a new road might really
increase travel time for everyone, contrary to what the general public believes (Braess, 1968).
His discovery of this counterintuitive phenomenon has come to be known as the Braess’s Para-
dox (BP), suggesting that a malfunctioning network could be ameliorated by removing parts
of it. BP was subsequently able to explain many instances in which the closure of existing im-
portant roadways helped traffic flow, such as in 1990, when the shutting of 42nd Street in New
York City for Earth Day alleviated congestion in the region. Hence, evidently, utilizing BP as
a tool in public transportation planning allows planners to enhance the overall efficiencies of
road networks.

1.1 Outline

In this study, we examine the existing data and provide an analytical solution to the tragedy
of the commons dilemma. To obtain the social optimum, we offer a real-time pricing strategy
based on the analytical solution. We conclude that the fee should match the cost of externalities
associated with adding a marginal car to the road. We employ a so-called ”least-iteration-cycle”
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strategy to improve taxi drivers’ route selections under the proposed fee scheme by combining
New York taxi data with smaller data sets. We discover that the overall travel time decreases by
7% to 19% during peak hours on three random days in 2010, demonstrating that the fee system
may greatly relieve the congestion situation.

1.2 Literature Review

Congestion pricing, particularly when applied to traffic congestion, is not a new concept in
public policy. Pigou was most likely the first person to propose that road users should be
taxed according to their marginal external costs. Knight also addressed this subject over a
century ago (Pigou, 1912). The congestion pricing of marginal external costs has remained
the primary premise in transportation economics and is referred to be the optimal congestion
control technique (Phang & Toh, 2004). However, the first-best pricing scheme is impractical
when sufficient data is available, hence the second-best pricing schemes have been extensively
addressed in the literature (Verhoef, 2005). In this work, we are able to calculate the first-best
strategy for the first time in practice using current technology.

In 1975, Singapore’s governmental policies included the implementation of congestion
charging. The government created a restricted driving area from 7:30 a.m. to 9:30 a.m. during
peak traffic hours and imposed additional tolls. This limitation decreased peak-hour traffic in
the restricted zone by 45 percent. After the implementation of the traffic estimating and pre-
diction tool (TrEPS) in 2010, the restricted area’s traffic volume decreased by an additional 10
to 30 percent (Channel New Asia, 2012). A comparable congestion pricing scheme was imple-
mented in London, United Kingdom in 2003, using automated license plate recognition from
7:00 am to 6:00 pm, Monday through Friday. The city’s public transport usage climbed by
50 to 60 percent, while the number of autos accessing the core area declined by 21 percent. In
addition to reducing environmental pollution and the number of accidents, the collected income
may be utilized to promote public benefits. Currently, Australia, Singapore, Austria, Finland,
Germany, Italy, Malta, Norway, Sweden, United Kingdom, United Arab Emirates, Brazil, and
Chile all have some form of a congestion road pricing scheme, and the results indicate that peak
hour travel demand is consistently reduced, along with other social and environmental negative
externalities such as air pollution, greenhouse gas emissions, visual intrusion, noise, and road
accidents. All of these solutions are successful primarily by reducing demand, therefore they
cannot address the tragedy of the commons dilemma outlined in the basic model (Figure 1).

1.3 Traffic Regulation Based on Economic Principles

As shown in Figure 1, the traffic flow in the traffic problem should be determined by the equi-
librium point bounded jointly by the demand and cost curves. In the absence of a surcharge,
travelers do not pay for the cost of congestion they impose on others, but they do pay for the
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cost of congestion others impose on them. In other words, they pay the average cost of travel
(AC), not the marginal cost (MC).

Since the social cost of travelers’ trips is the marginal cost, but the actual cost paid is the
average cost, what is finally reached is an inefficient equilibrium point, i.e., the intersection
of the AC curve and the demand curve in Figure 1, point b, corresponding to Vequilibrium (Ve).
Ideally, the marginal cost curve and the demand curve should reach an optimal equilibrium at
point h and correspond to a smaller traffic volume Voptimal (Vo). Therefore, the traffic congestion
caused by deadweight loss is marked by the yellow striped triangular shaded area hcb.

The social planners can minimize the deadweight loss by modifying the average cost of
travelers by means of a surcharge, which will cause the average cost curve to rise, as shown
in the Figure 2. Since marginal cost is the first-order derivative of total cost, the surcharge as
a constant term will be dropped, so the marginal cost curve is not affected by the surcharge.
When the surcharge is τ, the modified average cost intersects the demand curve at point h and
reaches the optimal traffic volume Vo.

1.4 Assumptions

1. Perfect Information
Assumption: All drivers have perfect information for their route decision.
Justification: Advanced traveler information systems (ATIS) such as Google Maps and
Apple Maps are available to drivers for free and a perfect real-time information.

2. Rational Drivers
Assumption: It is believed that drivers would choose the route with the shortest travel
time or lowest cost depending on available information.
Justification: Most drivers commuting on the roads tend to arrive at their destinations
efficiently and therefore do not have preferences of routes.

3. Homogeneous Vehicles
Assumption: All vehicles the road are identical.
Justification: Although vehicles differ in size, speed, drivers’ . For the sake of simplicity,
this variation in driving patterns will be disregarded.

4. Unchangeable Route
Assumption: Once a driver decides a route from the starting point to the destination, the
route will not be changed.
Justification: For the purpose of traffic control, many road systems adopt directional lanes
signaled by ”double white” lines to restrict vehicles from switching lanes. Therefore, it is
reasonable to assume that drivers cannot change routes once they enter some directional
lanes.
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1.5 Variable Definitions

A table of variables used in the study is given below.

Notation Definition
x Traffic Volume
T Travel Time
S Surcharge
m Iteration Number

Table 1: Notations

2 The Model

2.1 The social planner’s optimization problem

Consider all cars to be identical (no size difference). The road system consists of N connections,
with i representing the ith link. The value x indicates the traffic flow (number of automobiles
that pass by in a given period) (We use traffic flow and traffic volume interchangeablely in this
paper).

Assume that drivers might have diverse origins and destinations (ODs) and that the social
planner is aware of all ODs. The objective of the social planner is to minimize the total amount
of travel time T :

min
xi

∑
i

xiT (xi) for i = 1,2....N (1)

subject to: ODs are fixed.

Note that the ODs are fixed places a limitation on the social planner. In other words, this
model does not let OD demand to adjust to governmental policy. We will discuss more about
this assumption later.

2.2 The social cost

We suggest using a real-time charge mechanism to optimize the issue of social planners. The
fee structure will ensure that all societal expenses are absorbed. Let’s first examine how much
are the societal expenses.

Given the objective function of the social planner in Equation 1, if one marginal driver
enters the ith link, the marginal cost is:
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T (xi)+ xi
dT
dxi

(2)

However, when the marginal driver attempts to choose a route, his/her private cost is just
T (xi). Using a map application on the mobile device, he/she will make a decision based on the
projected journey time for several routes. The only piece of information he/she will examine
is the length of journey time given the existing circumstances. What he/she does not consider
is that, once he/she joins the system, the additional car will increase traffic flow and alter the
trip time for all other vehicles. xi

dT
dxi

represents the externality effect/social cost, which is the
difference between marginal total cost and marginal private cost.

To internalize the social cost, we implement a charge mechanism that requires the marginal
motorist to pay xi

dT
dxi

upon entering the link. We refer to the fee/charge as S, thus

Sit = xi
dT
dxi

(3)

If xi is a close to zero number, meaning there is little traffic flow, the charge is close to zero.
If the marginal effect on the travel time, dT

dxi
, is zero, meaning the marginal vehicle has a zero

externality effect, the charge is equal to zero.

2.3 The optimization strategy and computation method

Due to the OD limitation on the x traffic flow, it is impossible to develop an analytical solution
to the optimization issue. We shall instead employ an iterative calculation approach.

For the OD pair of a mediocre driver, there are several possible routes from origin to desti-
nation. Use j to represent the jth route. The driver’s purpose is to choose a route that minimizes
travel time:

min
j ∑

i
I jiT (xi) (4)

In this equation, I ji is an indicator equal to 1 if the ith route is included in the jth path, and
0 otherwise. In accordance with the pricing system, the purpose:

min
j ∑

i
I ji[T (xi)+ xi

dT
dxi

] (5)

If all individual drivers choose his/her optimal paths after taking social cost into consid-
eration, the social optimum will be reached. The intuition of our computation method is to
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adjust all drivers’ paths one by one and make enough iterations to eventually reach the social
optimum.

The general optimization computation steps are outlined below. In the implications section,
a more concrete model will be presented:

Start with the first newly arriving driver. Calculate the surcharge using Equation 3; given
the trajectories of all other drivers, adjust to the ideal path using Equation 3. This phase requires
the identification of all feasible routes from origin to destination, followed by the selection of
the ideal route.

Step 2: Proceed to the next driver. Given the routes of all other drivers, including the
modified one, repeat Step 1. When every driver has modified his or her route, one iteration is
complete;

Step 3:Update the journey time for the connection based on the new traffic assignment;
calculate the total travel time using the equation 1.

Step 4: Return to the first driver, update the surcharge using a ”least-iteration-cycle” algo-
rithm;

Step 5: Repeat the procedure until the system is stable (the difference in surcharge between
iterations is less than or equal to 10−2.

“least-iteration-cycle” is a heuristic receptive solution approach for guarantee the dynamic
system converges to equilibrium. By decreasing the weight of the newly calculated surcharge
and increasing the weight on the previous iteration, this repeated process guaranteed a equi-
librium converges at the end, which is similar to MSA (the Method of Successive Average), a
widely used algorithm for solving the traffic assignment.

Sit =
1
m

Sat +(1− 1
m
)Sa(t−1) (6)

Which m is the iteration number and a indicates average. The mathematics prove of system
optimal solution holds at this converges point and the unique solution of this dynamic system
please refer to the attachment.

3 Braess’s Paradox Network Demonstration

The method described above will first apply to the famous Bracess’s Paradox transportation
network(Figure 2b) which is a 5-link 3 possible paths carrying 4000 vehicles from A to B.
The original Bracess’s paradox transportation network problem describe a road network that
adding one or more will slow down overall traffic flow. As shown in Figure 2 (a), the original
4-links 2-path road network evenly distributes the road traffic due to the symmetric travel time
functions. Therefore the drivers’ individual travel time is 65 UOT (unite of time) and the total
system travel time is 160,000 UOT. However, after adding the ”0” cost link CD to the road
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network Figure 2 (b), the total system travel time has counter-intuitively increased to 320,000
UOT and individual travel time has also increased to 80 UOT, which is an increase of 23%
compare with the original network. The reason behind this is too many drivers are attracted
by this new route ACDB which leads to the congestion in some links of this road network. At
the same time, other drivers who maintain the original route suffer a travel time increase, and
force them to change to the new route, which caused these congested links has become more
congested.

In the past, solving this Bracess’s paradox problem was to identify and eliminate the redun-
dant links. However, we now can apply the surcharge mechanism as another way to tackle this
paradox. As the table 1 shows, with the 22.5 UOT surcharge on link AC and DB, the excessive
congestion is eliminated. Only 500 drivers choice the new route ACDB and the total system
time is reduced to 258,000, even 7.9% less than the original network. This result is exactly the
mathematical system optimal solution through the KKT condition. Although the drivers choice
different route travel time are various, with the surcharge they share the same travel cost. The
detail of this heuristic approach is list below.

As the table 1 demonstrated, at the first iteration, due to the over congested traffic at links
AC and DB, these two links charged at high surcharge rate 40 UOT which push all the traffic
off the new route ACDB. At the second iteration, although all the traffic removed from the
route ACDB, due to the “least-iteration-cycle” the surcharge rate only reduce to 30 UOT, the
route ACDB is till too expensive to attract the drivers to choose this route. This situation was
alleviated until the 5th iteration, where the surcharge rate reduced to 24 UOT. This surcharge
rate decreasing decline trend continues and converged at the 28th iteration, which is 22.5 UOT
surcharge on link AC and DB.

4 The Data

In this experiment, four datasets were used. The first is New York City speed and volume data,
the second is New York City taxi data, including pickup and drop-off locations for each cab,
the third is New York City road network structure data, and the fourth is New York City hourly
link travel time. In the following section, we will discuss each dataset in further depth.

Multiple stations administered by the New York State Department of Transportation gather
data on New York City’s speed and traffic volume. The statistics are public knowledge and may
be obtained from this link1. We use Region 11 speed data from 2014 to 2016 We additionally
spatially match the data with the New York City taxi data and use the taxi data’s station loca-
tions. The speed and volume statistics offer information on the number of vehicles detected
within 15 distinct speed bands. The first speed range is between 0 and 20 miles per hour, the
second between 20 and 25 miles per hour, etc. The top speed exceeds 85 miles per hour. Since

1https://www.dot.ny.gov/divisions/engineering/technical-services/highway-data-services/hdsb
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region 11 is a metropolitan area, the majority of vehicles operate in the lower speed range. The
figure depicts the dispersion of average speed (weighted by traffic volume). The average speed
is 22.08 miles per hour.

We utilize the data on velocity and volume to determine the linear connection between
velocity and density (Equation 8).

The New York City Cab & Limousine Commission (TLC) collects taxi trip data, which
includes pick-up and drop-off locations, fare, payment method, passenger numbers, etc. Prior
to the introduction of Green taxis in August 2013, Yellow taxis in New York City offered around
485,000 rides per day with an average distance of 2.6 miles. There are around 13,500 Yellow
taxis and 30,000 taxi drivers in operation. Similar trends exist for pick-up and drop-off by time
of day and day of the week. During the weekdays, there are two travel peaks that occur at 8
a.m. and 5 p.m. Therefore, we selected 8:00 am to 9:00 am and 5:00 pm to 6:00 pm for our
model’s test run.

OpenStreetMap (OSM), the primary data source for the road network structure in New
York City, provides the following road network structure data: link nodes, GPS coordinates,
direction, length, road type classifications, etc. GPS coordinates were used to map the New
York taxi trip data to this data layer.

Although we have several speed and traffic data gathering stations, they do not cover ev-
ery route segment. We thus utilize the anticipated traffic speeds derived from New York cab
trip data (697,622,444 trips). The estimate was done by the research group led by Dan Work
(DWG). Due to data record/storage problems, this estimate accounts for around 7.5% inaccu-
racies. The following table provides summary statistics on the data used in the implementation
of the model for New York City. During peak hours, the average travel length is between 2.21
and 2.62 miles, and the average trip time is around 12 minutes (648.5 773.05 seconds).

5 Empirical Results

To estimate Equation 8, we do a linear regression with fixed effects on the speed and volume
data for New York City. The outcome is shown in Table 4.

Then, we do iterations to determine the ideal real-time surcharge for achieving minimal
overall trip time for the whole taxi system. In this procedure, a heuristic strategy, the ”least-
iteration-cycle” method, is provided to identify all potential routes from a given origin to a
particular destination (ODs). With the initial setting of each vehicle’s OD in step 1, the least
expensive route for each taxi is identified. Using the prior shortest route assignment from step
2, we then estimate the traffic flow and journey time. Next, the link marginal cost function is
used to estimate the externality for the other cars on the connection if further vehicles use it. In
order to limit the amount of back-and-forth, the Measure of Success Average (MSA) approach
is used to step four. Each preceding iteration is accorded more significance than succeeding it-
erations. This method then returns to the first phase and continues until convergence conditions
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are met. Overall, the ”least-iteration-cycle” strategy looks for drivers’ least expensive routes in
each iteration, and each link’s surcharge cost indirectly influences their route choices to inter-
nalize the impact of externality on all other drivers. The following information characterize the
iteration:

Steps 1 through 3 are identical to Section ”The optimization strategy and computation
method”.

Step 4: Update the surcharge to include ’least-iteration-cycle’;
Step 5: Return the procedure until the convergence requirements are met:

∑
i

|Sit −Si(t−1)|
Sit

≤ 1% (7)

Using taxi trip data and transportation network information data from 2010, we apply this
model to New York City. We randomly choose three weekdays (Jan. 5th, Feb. 2nd and October
5th, 2010) to determine the total amount of daylight saving time. We concentrate solely on
the most busy hours, 8:00 am to 9:00 am (AM peak) and 5:00 pm to 6:00 pm (PM peak) (PM
peak). The results are shown in Table 5. As the time value while determining the fee, we use
$20/h.

As shown in Table 5, the average cost per connection ranges from $0.22 to $0.92, and the
entire system travel time improves by 7% to 19% depending on the date and peak hour. The
model also predicts a 5–20% reduction in journey time. The average velocity rises by 27%,
from 1%. According to the data on average connection time and average speed, the overall
amount of time saved does not rely on the degree of congestion, but rather the traffic distribu-
tion during that time period. 2010 Jan. 5th, 2010 and Feb. 2nd, 2010 have comparable conges-
tion levels (average link travel time around 163sec and average link speed around 1.35mph).
However, while one network (Jan. 5th, 2010 5pm) could only improve 7 percent of total travel
time, the other network (Feb. 2nd, 2010 8am) could save 17 percent.

Following the implementation of the fee, congestion is greatly decreased. Figure 6 illus-
trates the comparison of connection speed before and after the October 5th, 2010 fee. On the
map, the network traffic speed diagram is separated into three categories: red indicates link
speeds below 10 mph, yellow indicates speeds between 10 mph and 25 mph, and green indi-
cates link speeds over 25 mph.

According to the speed diagrams, traffic conditions improve when the fee is implemented.
The top left and bottom left panels display the link’s average speed without a premium between
8:00 a.m. and 9:00 a.m. and 5:00 p.m. and 6:00 p.m. The panels on the top right and bottom
right compare the speed map after the fee. It demonstrates that, after the application of the
fee, the red color decreases and the yellow color grows, particularly in downtown corridors and
main avenues. In New York City’s downtown, avenues, which typically run perpendicularly
from north to south, are often one or two lanes wider than streets, which run horizontally from
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east to west. The diagrams reveal that after the fee, vertical congestion on avenues is decreased
more than horizontal congestion on streets. Due to quicker speeds and larger roads, when there
is no fee an excessive number of cars prefer to congregate along avenues, causing congestion.
Due to the increased price at crowded ”avenues” when the surcharge is implemented, some
traffic flow will divert to alternate routes, hence alleviating congestion.

Figure 7 and Figure 8 illustrate the taxi volume variations once the surcharge is imple-
mented in further detail. The red line in the diagram depicts the decrease in taxi volume after
the surcharge has been implemented, whereas the blue line reflects the rise in taxi volume. The
width of the lines indicates the volume change’s numerical value.

As shown in Figure Figure 7, the traffic volume on area 1 and area 2 decreases significantly
at the 8am peak hour of October 5th, 2010. For instance, the FDR Drive serves to alleviate
congestion in lower Manhattan. Because the FDR Drive is a three-lane roadway, it does not
get crowded when 265 taxis transfer to this route from other routes. Nonetheless, as shown in
Figure 6, these two regions continue to experience severe congestion despite the application of
the premium.

The volume changes in regions 1 and 2 are different at 5 p.m. than they were at 8 a.m.
on the same day. Due to the significant congestion in area 4, a portion of the traffic transfers
to other routes in areas1 and 2 in an effort to alleviate the congestion. In addition, traffic on
the Queens Midtown Tunnel and Ed Koch Queensboro Bridges transfers to other routes. As
demonstrated in 8, the volume on these routes therefore rises.

Figure 9 and Figure 10 exhibit additional information on the surcharge rate, with the width
of the lines denoting the surcharge rate’s numerical value. The top panel of Figure 9 displays
the surcharges for the road direction from west to east or north to south at 8:00 a.m. on October
5th 2010, while the bottom panel displays the surcharges for the road direction from east to
west or south to north. It reveals that the greatest tolls are found on East-to-West bound bridges
and tunnels that link Brooklyn to Manhattan during the morning rush hour. Moreover, owing
to the high volume of traffic and the lack of alternate routes to John F. Kennedy International
Airport (JFK), the tolls on the link highways in both directions are exorbitant.

Figure 10 depicts the surcharges at 5:00 p.m. on October 5th 2010 It demonstrates that, as a
result of the traffic pattern from work to home, the biggest surcharges are placed at East-to-West
and West-to-East bound bridges/tunnels, which vary from the morning peak hours.

6 Discussion and Conclusion

In this study, an analytical solution to the tragedy of the commons issue in traffic congestion
is presented. To reach the societal optimum, we suggest a real-time charging system based on
the analytical solution. Under the fee system, drivers would be penalized for choosing a more
crowded route and will have an incentive to choose a less congested route. Then, all drivers’
route selections are optimized for the whole transportation network. Due to the complexity of
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the transportation network, it is not possible to calculate numerically the ideal surcharge for
the whole network system. Therefore, we use the ”least-iteration-cycle” method to reduce this
computational load. By repeatedly simulating drivers’ route selection, we can determine the
ideal real-time fee structure that dramatically lowers congestion. We apply the model to taxi
data from New York City and show that the fee scheme can cut overall journey time by between
7% and 19% during peak hours on three random days in 2010.

Please note that since we only have information on taxi vehicles, the optimization is incom-
plete. We predict that once we have information on all automobiles, the system will improve
even more. As autonomous cars are the future of transportation and several businesses are
racing to develop these technologies, we can be assured that more transportation data will be
accessible, and we will be able to adopt smart management in a more effective manner.
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Figure 1: Dead Weight Loss of Transportation
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Figure 2: Correction of the Marginal Cost Curve
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Figure 3: Social optimum for transportation flow
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Figure 4: Braess’s Paradox Network
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Table 2: Surcharge Rate Calculation Process
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Figure 5: Distribution of average speed
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Figure 6: New York City peak hour speed diagram

Upper Left: Average traffic speed of 8:00am-9:00am without surcharge. Upper Right: Average traffic speed of
8:00am-9:00am with surcharge. Lower Left: Average traffic speed of 5:00pm-6:00pm without surcharge. Lower
Right: Average traffic speed of 5:00pm-6:00pm with surcharge. All four panels are for October 5th, 2010.
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Figure 7: Taxi volume changes diagram for 8am
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Figure 8: Taxi volume changes diagram for 5pm
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Figure 9: Surcharge rates at 8am

Top: West to East or North to South surcharge rate at 8am. Bottom: East to West or South to North surcharge rate
at 8am. All panels are for October 5th, 2010.
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Figure 10: Surcharge rates at 5pm

Top: West to East or North to South surcharge rate at 5pm. Bottom: East to West or South to North surcharge
rate at 5pm. All panels are for October 5th, 2010.
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Table 3: Summary Statistics
Variables Mean Std. Dev. Min Max Obs. Dataset
Link Length (yard) 132.98 107.84 2.81 3937.12 260,855 OSM
Link travel Time (sec) 25.75 29.35 0.8 2781.11 84,480,169 DWG
Jan. 5th 8am trip length (mile) 2.32 2.79 0 33.9 29,858 TLC
Jan. 5th 5pm trip length (mile) 2.37 2.95 0 42.69 26,640 TLC
Feb. 2nd 8am trip length (mile) 2.21 2.43 0 33.6 13,678 TLC
Feb. 2nd 5pm trip length (mile) 2.26 3.02 0 172.6 11,542 TLC
Oct. 5th 8am trip length (mile) 2.42 2.83 0 31.3 27,913 TLC
Oct. 5th 5pm trip length (mile) 2.62 3.28 0 49.3 24,586 TLC
Jan. 5th 8am Original trip time (sec) 674.65 494.44 0 10641 29,858 TLC
Jan. 5th 5pm Original trip time (sec) 687.81 572.02 0 8220 26,640 TLC
Feb. 2nd 8am Original trip time (sec) 658.43 444.5 0 4425 13,678 TLC
Feb. 2nd 5pm Original trip time (sec) 648.5 457.33 1 6516 11,542 TLC
Oct. 5th 8am Original trip time (sec) 743.14 534.31 0 7939 27,913 TLC
Oct. 5th 5pm Original trip time (sec) 772.05 587.17 0 6007 24,586 TLC
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Table 4: Speed and density
Variable Coef. Std. Err. P> |t|
Constant 27.48 0.098 0.000
desinty -0.24 0.001 0.000
Fixed effects of monitoring stations Yes
Observation number 199,165
Adjusted R-square 0.74
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Table 5: Total time savings

Date Time
Avg. link time Average Speed Avg Link

Total System Time(sec)
(sec) (mph) surcharge

Before After Before After Rate Before After Percent

1/5/2010
8am 76.54 63.43 14.49 15.84 $0.42 63,966,078 52,722,606 18%
5pm 163.43 152.34 13.30 15.61 $0.92 121,932,803 113,241,243 7%

2/2/2010
8am 162.98 133.27 15.62 17.35 $0.81 68,224,757 56,362,618 17%
5pm 125.97 100.97 14.77 16.17 $0.63 42,586,399 34,666,136 19%

10/5/2010
8am 26.48 24.85 8.69 9.68 $0.25 20,453,775 18,197,076 11%
5pm 24.19 22.88 9.40 10.24 $0.22 18,231,036 16,568,184 9%
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Figure 11: Function Forms
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Figure 12: Traffic flow and demand
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7 Appendix A:

To apply the model using empirical data, the function form of the journey time t(x) must be
specified. Less straightforward is the link between trip time and traffic flow in the transportation
literature. Relationships between average speed, traffic flow, and traffic density are typical
functions. Calculating trip time by dividing lane length by speed.

Empirical research from the transportation literature indicates that speed is a linear function
of population density. The velocity is represented by u and the density by k. So:

u = α0 +α1k (8)

In which α0 > 0 and α1 < 0, and the road density is defined by:

k ≡ x
u

(9)

We may construct the functions between speed and traffic flow and between traffic flow and
density by combining these two equations. The linear and nonlinear functions are shown in
figure 11.

Note that the connection between speed u and traffic flow x is nonlinear. When the traffic
flow is very low, there is either no traffic and the speed is very high, or there is traffic and the
speed is very low. Traffic volume is also a nonlinear function of population density. There
is either no traffic (high speed and low density) or traffic congestion when the traffic flow is
minimal (low speed and high density).

If we add one mediocre vehicle to one connection, we anticipate that the speed will de-
crease. Based on Equation 8, the density will be greater. In other words, the rise in road demand
is proportional to the density. If there is no traffic congestion, the demand for transportation
is equivalent to the observed traffic flow. However, when congestion exists, the transportation
demand exceeds the apparent traffic flow.

We assume, for the sake of simplicity, that the potential demand is proportional to the traffic
flow after the road’s maximum flow is achieved and congestion begins. If one marginal vehicle
enters a connection, the potential demand increases by one vehicle, yet traffic flow may grow
or decrease. This is seen in Figure 12. Marking D as D∗ when x reaches its maximum allows
us to express the link between D and x as:

x =

{
D, if 0 < D ≤ D∗

2D∗−D, if D > D∗ (10)

Given the relationship between traffic flow, density, speed and demand, we can finally write
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down the function for travel time. Use l to indicate one link’s length, the travel time is:

T =
l
u

(11)

According to Equation 9 and 10,

T =
l
u
=

l
x/k

=

{
l

D/k , if 0 < D ≤ D∗

l
(2D∗−D)/k , if D > D∗ (12)

Correspondently, the surcharge can be written as a function of demand:

S = x
dT
dD

=

{
D dT

dD , if 0 < D ≤ D∗

(2D∗−D) dT
dD , if D > D∗ (13)
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8 Appendix B:

In the empirical section, we will estimate al pha and al pha1 in Equation 8 and then compute
the surcharge using the values presented in Appendix.

The empirical evidence shows that:

u = 27.48−0.24k

As u = x
k , k is a function of x as following:

k =

{
57.25−

√
3277.56−4.17x, if k ≤ 57.25;

57.25+
√

3277.56−4.17x, if k > 57.25;

Here 0≤ x≤ 786. Although the volume of traffic cannot exceed 786, the theoretical demand
may. According to Figure 12, k is an increasing function of demand D. When k ≤ 57.25,

k = 57.25−
√

3277.56−4.17D if 0 < D ≤ 786

When k > 57.25, demand will surpass 786. For simplicity, we assume that the prospective
demand is symmetric with respect to the traffic flow curve x = 786. So when k > 57.25, D =

1572− x, and:

k = 57.25+
√
−3277.68+4.17D if D > 786

Combining these two equations, the full function can be written as:

k =

{
57.25−

√
3277.56−4.17D, if 0 < D ≤ 786

57.25+
√
−3277.68+4.17D, if D > 786

With the given the link length l, the link travel time function will be:

T =
l
u
=

l
x/k

=

{
l

D/k , if 0 < D ≤ 786
l

(1572−D)/k , if D > 786

Therefore:
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T =

{
l(57.25−

√
3277.56−4.17D)

D , if 0 < D ≤ 786
l(57.25+

√
−3277.68+4.17D)
1572−D , if D > 786

The surcharge is written as:

S =


l( 4.17

2
√

3277.56−4.17D
−57.25+

√
3277.56−4.17D)

D , if 0 < D ≤ 786
l( 4.17(1572−D)

2
√
−3277.56+4.17D

+57.25+
√
−3277.56+4.17D)

(1572−D) , if D > 786
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